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An approach for describing the dynamics of nuclear fission in the framework of 
generalized quantum mechanics is discussed. The collective kinetic energy is 
assumed to be two dimensional, and the reduced mass is allowed to vary with 
the coordinates. The generalized calculus of variation is employed for minimizing 
the action after being properly quantized as required by Hamilton's principle, 
employing a curvilinear coordinate system. The corresponding Euler Lagrange 
equation is identified as the required generalized equation of motion. The proposed 
generalized two-dimensional equation of motion is separated into a vibrational 
eigenvalue equation and a set of coupled-channel one-dimensional equations 
which describe the translational motion, by exploiting the completeness of the 
vibrational eigenfunctions. Such a system of coupled equations can be decoupled 
by replacing the coupling matrix elements by a nonlocal interaction, which 
can be rendered local after employing the effective mass approximation. As a 
consequence this differential equation is provided with an effective mass, an 
effective potential barrier, and a differential boundary term which is responsible 
for restoring the self-adjointness of the kinetic energy differential operator. 

1. I N T R O D U C T I O N  

In view of  the fact that the exis tence o f  dips in the potent ia l  f iss ion 
barr ier  is wel l  es tabl ished both theoret ica l ly  (Strutinsky, 1967, 1968) and 
exper imenta l ly  (Polikonov, 1962), the present  paper  deve lops  a s impl i f ied  
quantal  t reatment  for descr ib ing the origin and consequence  o f  such energy 
dips on the fission dynamics .  

A n  at tempt  was made  by Morsy  et  al. (1979) to deve lop  a s impl i f ied  
quantal  t reatment  for descr ib ing the dynamics  of  nuclear  f ission on the basis  
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of an optical model approximation and in terms of a double-centered Wood- 
Saxon potential barrier. 

However, the theoretical treatments for describing the problem of nuclear 
fission do not guarantee self-adjointness of the kinetic energy differential 
operator (Bloch, 1957; Lane and Robson, 1966; Morsy and Ata, 1971a-c). 

The main objective of this paper is to establish a generalized quantal 
treatment for nuclear fission that is free from the above-mentioned shortcom- 
ing. This can be accomplished by: 

(1) Establishing in terms of curvilinear coordinates a generalized two- 
dimensional scattering equation, by employing the generalized calculus of 
variation in the framework of Hamilton's principle after being properly quan- 
tized. The kinetic energy differential operator is not only self-adjoint by itself, 
but also is provided with a varying reduced mass. 

(2) Separating out the generalized two-dimensional scattering equation 
into a vibrational eigenvalue equation and a set of coup led-channe l  one- 
dimensional translation equations which is provided with varying reduced 
mass, and a differential boundary term. 

(3) Decoupling the set of coupled-channel equations by applying the 
optical model and effective mass approximations to a differential equation 
provided with an effective fission barrier (EFB), an effective reduced mass 
(ERM), and a differential boundary term that is responsible for making the 
kinetic energy to be intrinsically self-adjoint. In addition, both the EFB and 
ERM satisfy the appropriate asymptotic requirements. 

2. GENERALIZED EULER-LAGRANGE DIFFERENTIAL 
EQUATION 

Let us assume that the classical kinetic energy of collective nuclear 
motion is bilinear in velocities with the form (Morsy et aL,  1979) 

T = �89 2 + ~2] (2.1) 

in which u, v, and v(u)  correspond, respectively, to motion along the fission 
path (v -- O) and perpendicular to it, with the varying reduced mass of 
the system 

"q(v) = 1 + vkoO(u o - lul) (2.2) 

where k0 refers to the constant curvature of the fission coordinate, O(x) is the 
usual step function, and the choice of u0 and k0 is made such that the 
displacement of the fission coordinates v = 0 from the path of minimum 



Effective 1D Equation of Motion for Nuclear Fission 1909 

potential energy is kept minimum. As a consequence, the corresponding 
Lagrangian function reads 

1 [  p2 p2 ] 
t = ~ 1)(u~-~2(v ) --I- v(u)J - V(u, v) (2.3) 

where V(u, v) denotes the potential energy function. This Lagrangian can be 
written more formally in terms of the momenta p,, Pv as 

L(u, V, pu, pO = -~ r p ,  + pr  p~ _ V(u, v) (2.4) 

where Px and pr  stand for the momentum and its transpose, respectively, and 
v and .q2 stand for v(u) and "q2(u), respectively. 

At this point, we are in a position to incorporate the quantal features in 
the above classical Lagrangian. This can be accomplished by following the 
quantization procedure developed by Morsy et al. (1982), Embaby (1978), 
Morsy and Embaby (1986a, b), and EI-Sabagh (1979). This procedure requires 
the replacement of every momentum variable Px by the corresponding differ- 
ential operator/5 x, namely 

h?' h 
Px --~ Px - -- . Ox (2.5) 

i 3x l 

and 

h 
pr  ___) px r = = . (Ix 

i Ox t (2.6) 

As a result, the quantal analogue of the Lagrangian can be represented as 

h 2 h 2 
L(u, v, Pu, Pv) = - ( I ,  ~ D .  - O v ~vv D~ - V(u, v) (2.7) 

in which 

D ~  - and (Ix = - -  
Ox Ox 

In terms of curvilinear coordinates (u, v) the quantal analogue (L) is simply 
the expectation value of/~ (Morsy and Ata, 1971a-c; Morsy et al., 1982) 

( L ) =  f~= du f~_~ dv ~ t~*(u, v, t)L(u, v, P,,  Pv)t~(u, v, t) (2.8) 
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where g denotes the determinant 

0 l v(u) = ~2(v)va(u) (2.9) 

where ~(u, v, t) denotes the state function of the system, whose modulus 
squared gives the probability density; one expects that the total probability 
would be 

dt du dv xfgl~l/(u, v, 012 = 1 (2.10) 
0 

Now, by virtue of equations (2.7) and (2.8), we get 

(s = 

du dv x/~O*(u, v, t) - O ,  ~ O, - O v ~ O~, - V(u, v)l*(u, v, t) 

(2.11) 

The Hamilton principle of  least action requires that the functional varia- 
tion of the quantal action 

Aq = dt ([,) (2.12) 
0 

must vanish identically for every choice of the variational variable ~ ( u ,  v, t) 
subject to the constrained integral given by (2.10), namely 

I 'l ~Aq = ~ dt (L) = 0 (2.13) 
0 

Such a constrained variational problem can be reduced to an unconstrained 
one by introducing a Lagrangian multiplier h defined as (Morsy and 
Embaby, 1986) 

h dt du dv ~ l ~ ( u , v ,  OI 2 -  1 = 0 (2.14) 
t- . , to  

As a consequence, the quantal action becomes 

Aq = dt du dv ~ ~* -(]u ~v~ Du - (I~, ~v Dv - V(u, V) t~ 
0 - - ~  

+x[["d, f7 d.;T 2- 1] (2.15) 
t - J  t 0 
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Clearly, the condition 

!,"LL 6 dt du dv ~ F[+, d/u, ~'v, ~*, '* tG , ~',*) = 0 (2.16) 
0 

in which 

F(~, G, +;  ~*, G*, +'~*) - 
h 2 h 2 

2v'q 2 1~12 -- G 10"12 -- ( V -  h)lt~[ 2 

(2.17) 

ensures automatically Hamilton's principle, since the arbitrary state functions 
t~ are assumed to be time independent. 

It might be thought that the employment f the conventional calculus of 
variation could give rise to a quantal equation of motion which is in fact the 
corresponding Euler-Lagrange differential equation that ensures the minimi- 
zation of the quantal action. However, the conventional calculus of variation 
suffers from the fact that the endpoints are restricted to be fixed. In fact this 
restriction is probed not only to be unnecessary, but also to prohibit the 
Euler-Lagrange differential operator from being self-adjoint (Embaby, 1978). 

We adopt the generalized calculus of variation that developed by Morsy 
et al. (1986). Following a similar procedure to that outlined in Fathia (1980), 
we can derive the generalized Euler-Lagrange differential equation which 
satisfies the Hamilton principle given by (2.16), namely 

[0 ( , 

(2.18) 

o r  

+ (8. (2.19) 
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in which 

~u = 8(u - u2) - ~(u - ul) (2.20a) 

~v = 8(v - v2) - 8(v - v0 (2.20b) 

where ~(x - xk) denotes the Dirac delta function. 
Now, on inserting the explicit expression for the function F as given by 

(2.17) into the above pair (2.18) and (2.19), we get 

[ h2 1 ( O 1 0 + 3 v /g l  O ) 
2 ,jg ~u v/~ V~l ----~ O---u Ov ; ~vv 

+ g , - - + - - g v  + V -  X ~(u,v) = 0  (2.21) 
3u 2v 3v 

togehter with its complex conjugate. 
Furthermore, and by virtue of the explicit expression for g given by 

(2.9), we get 

- - + - - + - - - -  + g, 
-2-~-~ ~-2(v) au 2 Ov 2 ~(v) Ov 2v(u)~2(v) Ou 

+ gv 2v(u) 3v + v(u, v) - X qJ(u, v) = 0 (2.22) 

in which the fission coordinate curvature KoO(uo - lul) is constant in the 
interaction region lul -< u0 and zero outside. 

Moreover, the Lagrange multiplier X, which is assumed to be an arbitrary 
parameter, plays the role of fission energy E. In this respect the equation of 
motion given by (2.22) becomes 

[ _ -2--~2(D2u ~uDu) ~vv 

+ V(u, v) - E]t0(u, v) = 0 (2.23) 

in which V(u, v) and ~(u, v) denote the potential energy and the wave function 
of the system, respectively. 

The equation of motion given by (2.23) differs from that previously 
established for nuclear fission (Morsy et al., 1979) by the presence of the 
boundary differential terms: 

h 2 h 2 

2m12 ~ Ou + ~v gv Ov 
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These boundary terms, which are associated with the kinetic energy differen- 
tial operator, are in fact responsible for restoring its self-adjointness. Such 
terms generally do not vanish except under some special representations. 

3. REDUCTION OF THE EQUATION OF MOTION 

In the preceding section, we established a two-dimensional equation of 
motion for nuclear fission by employing the generalized calculus of variation 
for minimizing the quantal action in natural collision coordiunates as required 
by Hamilton's principle. 

In the present section, the completeness of a set of vibrational eigenfunc- 
tions is exploited to separate out the two-dimensional equation of motion 
into a vibrational eigenvalue equation and a set of coupled interchannel one- 
dimensional equations which describe the translational motion. Such set can 
be decoupled in the framewrok of the optical model approximation. The 
resulting integrodifferential equation can be reduced to an equivalent differen- 
tial equation after employing the effective mass approximation. 

We expand the potential energy as a Taylor series in powers of the 
vibrational coordinates v namely 

0 1 0 2 
V(u, v) = V(u, O) + ~v V(u, v)lv=oV + ~.. ~SvZ V(u, v)lv=ov2 + "'" (3.1) 

However, the second term vanishes by the fission coordinates and conse- 
quently (2.23) becomes 

2v(u)xl2(v ) (DZ. - g,,D,,) - 2v(u-~ D~ - ~ - Dv + V(u, O) 

1 ] -{"- -~ V(U)W2(U)V 2 - -  E I~l(u, v) = 0 (3 .2 )  

in which w(u) represents the local frequency 

02 
II(U)W2(U) = OV-"" ~ V(u, V)lv= 0 (3.3) 

The above partial differential equation can be reduced to two uncoupled 
ordinary differential equations in u and v. To accomplish this, let us assume that 
there exists a set of vibrational eigenfunctions ~b,(u, v) which are orthogonal, 

I~oodv v) = ~,,~ (3.4a) +~*(u, V)f~n(U, 
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and complete, 

, ,  +,.(u , v)+.(u, v) = ~(u - u') 
n=0  

Such a complete set satisfies the following eigenvalue equation: 

h 2 K D 

= e . ( u ) + . ( u ,  v) 

+ ~ v(u)w2(u)v 2 +.(u, v) 

(3.4b) 

in which %(u) denotes the associated eigenenergy. In terms of such a complete 
set, one can expand the scattering wave function ~J(u, v) as a convergent 
series as 

~(u, v) = ~ F.(u)~.(u, v) (3.6) 
n=0 

where F.(u) are the corresponding expansion coefficients. Substituting (3.6) 
into (3.2) and employing (3.5), we get 

- 2 - ~  (D~ - 8vD.)V(u, O) + %(u) - E F.(u)+.(u, v) = 0 (3.7) 
n=O 

On multiplying the lhs of the above equation by ~q2, and adding and 
subtracting the quantity (V(u, 0) + %(u) - E), we obtain 

{ h2 
~ - 2 - - ~  (D2" - 6 .D.)  + V(u, 0) + ~.(u) - E + [~2(v) - l](V(u, 0) 

n=O 

+ %(u) - E}F.(u)d~,,(u, v) = 0 (3.8) 

which after projecting out the vibrational eigenfunction +.(u, v) and using 
the orthonormality equation (3.4a), reads 

~ { h 2 h 2 [ h 2 
- - ~ - ~  Lm.(U) - 2v(u-----~ M,,~(ZDu - ~.) + - 2 - - ~  (D2 - 6uD~) 

n = 0  

4- V(u, O)+ f-n(U ) -- F.]~mn + [V(u, O) -I- en(U) -- E]Nmn(u)}Fn(u) = 0 

(3.9) 

(3.5) 
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where Dx(x = u, v) denotes d/dx, and L,..(u), M,..(u), and Nm.(U) stand for 
the matrix elements 

L,..(u) = f~= 

Mm.(u) = f~o~ 

N,,~(u) = f f= 

dv +*(u, v)+'~(u, v) (3.10) 

dv ~b*(u, v)~b'~(u, v) (3.1 t) 

dv d~*(u, v)['q2(v) - 1]d~.(u. v) (3.12) 

However, equation (3.9) can be rewritten as a set of equations: 

~m. - - ~ - ~  (D~. - ~.D.) + V(u, O) + ~.(u) - E + U,,~(u) F.(u) = 0 
n=O 

(3.13) 

where U,,~ stands for the coupling potential: 

U,,~(u) - - -  [Lmn(u) + Mmn(U)(2D~ - ~)] + [V(u, 0) + en(u) - E]N,,~ 
2v(u) 

(3.14) 

which directly couples the channel m with the channel n. 
The set of coupled channel equations given by (3.13) differs from those 

previously established by Morsy et al. (1979) in the presence of a differential 
boundary term [h2/2v(u)]~uDi in the kinetic energy differential operator, 
which is responsible for restoring self-adjointness. 

Now, the above set of coupled equations can be solved by means of 
numerical integration techniques due to Marcus (1968) and Conner and 
Marcus (1970), but such techniques evidently require considerable effort. 
Alternatively we may decouple such a set of equations by employing the 
optical approximation of Morsy et al. (1979) and Feshbach (1962, 1968). To 
accomplish this, let us introduce an effective nonlocal optical potential in 
terms of which equation (3.13) can be written as 

- - } - ~  (D~ - ~b.D.)  + V(u, O) + en(u) - E F,~(u) 

+ (~ du' U(u, u')Fn(u') = 0 (3.15) 



1916 Morsy and Imam 

in which the kernel U(u, u') is principally governed by the criterion 

Smn(bi)fn(u) = I ~ du' g(u, u')Fdu') (3.16) 
m=O J_  

This criterion has a certain similarity to that conventionally known as 
the adiabatic approximation (Levine, 1968), but is more transparent. 

Now, our immediate task is to solve the scattering equation (3.15), which 
involves a nonlocal potential. However, explicit nonlocal potential problems 
are far less convenient to handle analytically than local ones. Accordingly, 
we shall convert the above integrodifferential equation into an approximate 
equivalent differential equation. 

This can be accomplished by employing a moment expansion for the 
nonlocal potential operator. More precisely, we expand the scattering wave 
function F,,(u') in a Taylor series around u as 

(u '  - u )  k O k 
Fo(u') k=0 k! Ou k F.(u')l . ,=. (3.17) 

by virtue of which the nonlocal potential operator can be expressed as 

f ~  ~ Ok 
du' g(u, u ' ) f . (u ' )  = ~, Uk(u) ~u k F.(u) (3.18) 

k=0 

where Uk(u) stands for 

Uk(u) = ~ du' U(u, u')(u - u') k (3.19) 

At this point, let us assume that the nonlocality of the interaction is not 
so strong, such that the terms of order higher than k = 2 in the above series 
can be neglected. Substitution of expression (3.18) into (3.15) yields a second- 
order differential equation with a local potential, 

Uo(u) + V(u, O) + e,(u) - E~F,(u) = 0 (3.20) + 
J 

in which 

I~ du' u) k <- e_ U(u, Ut)(U I, 
l 
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Moreover, the first-order differential operator can be reduced by inserting 
the substitution 

F,,(u) = W(u)~,,(u) (3.21) 

into equation (3.20), then adding and subtracting the quantity Uzg,, as a result 
of which we obtain 

- - U2 D 2 +  - U2 ~.  + Ul - - - - - +  2 - - U 2  + U2~. D .  
1) W W 

- ~vv-  U2 --w + gu + Ul --w + Uo(u) + V(u,O) + r  

x ~,(u) = 0 (3.22) 

Let us assume that w(u) is chosen to satisfy the following first-order differen- 
tial equation: 

2 - 2 v  + U2 w' + (Ul + Ua6,)w = 0 (3.23) 

Consequently, equation (3.22) can be expressed as 

- 2~ -u )  Uz(u) (D 2 - g,,D,,) + U(u)  + Uo(u) 

+ V(u, 0) + e.(u) - E}~.(u)  = 0 (3.24) 

where 

+ 2 ~vv ~" + Ut h2/2 v ~ ~ (3.25) 

Finally, (3.24) can be expressed simply as 

- ~  (D 2 - g ,O,)  + ~%(u) - E ~,(u) = 0 (3.26) 

in which ~,(u) and U(u) denote, respectively, the effective reduced mass 
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(ERM) and effective fission barrier (EFB), which are given respectively in 
the following forms: 

v(u) 
~(u) = 1 - 2v(u)Uz(u)/h 2 (3.27) 

and 

On(u) = U(u) + Uo(u) + V(u, 0) + e.(u) (3.28) 

The effect of the interchannel interaction is contained in both the EFB 
and ERM, which, in general, are complex quantities in view of the fact that 
the kernel U(u, u')  is assumed to be a complex optical potential. 

Furthermore, the presence of the first-order differential boundary term 
[h2/2~(u)]~uDu is responsible for making the kinetic energy to be intrinsically 
self-adjoint. 

4. S U M M A R Y  AND C O N C L U S I O N S  

In the present paper, a generalized equation of motion for describing 
the dynamics of nuclear fission has been established on the basis of Hamilton's 
principle of least action, after incorporating properly the quantal features and 
employing the generalized variational calculus. It turns out that our proposed 
equation of motion is simply the corresponding generalized Euler-Lagrange 
differential equation, which differs from the conventional Schrrdinger equa- 
tion by the presence of a differential boundary term that is responsible for 
restoring intrinsic self-adjointness. 

The concept of completeness of the variational eigenfunction has been 
exploited to separate this proposed two-dimensional equation of motion into a 
vibrational eigenvalue equation and a set of coupled-channel one-dimensional 
equations. Such coupled-channel equations are intrinsically self-adjoint. 

Furthermore, it has been shown that by employing the optical model 
approximation it is possible to decouple the coupled-channel equation into 
an integrodifferential equation. Such an equation could be further reduced 
to an equivalent differential equation in the framework of the effective 
mass approximation. 

This equivalent differential equation has been provided with an effective 
potential energy barrier, an effective reduced mass that may be complex, and 
a first-order differential boundary term. 
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